Puentes Sustentados por Cables (Colgantes, Atirantados).

a. Puentes Colgantes.

De aspecto armonioso y extensa aplicación, salvan los más amplios tramos de todo el mundo; el de la Golden Gate, entrada a la bahía de San Francisco (California), tiene 1281 m de longitud. Los principales elementos de estos puentes son sus cables, suspendidos de torres y anclados por sus extremos a los pilares de sujeción. Tales cables, compuestos generalmente por miles de alambres paralelos de acero galvanizado, de 5 mm de diámetro (generalmente), agrupados para formar una sección circular, llevan un arrollamiento en espiral de alambre que mantiene su forma cilíndrica al tiempo que los impermeabiliza. Cada uno de los cuatro cables que sustentan el puente de George Washintong (con un tramo de 1000 m sobre el río Hudson) tiene 76 cm de diámetro y 26000 hilos. Los puentes de tramos relativamente cortos emplean cables de alambre retorcido corriente; también se utilizan cadenas de barra de ojal. 
En los puentes colgantes, la estructura resistente básica está formada por los cables principales, que se fijan en los extremos del vano a salvar, y tienen la flecha necesaria para soportar mediante un mecanismo de tracción pura, las cargas que actúan sobre él. El puente colgante más elemental es el puente catenaria, donde los propios cables principales sirven de plataforma de paso.
Paradójicamente, la gran virtud y el gran defecto de los puentes colgantes se deben a una misma cualidad: su ligereza.
La ligereza de los puentes colgantes, los hace más sensibles que ningún otro tipo al aumento de las cargas de tráfico que circulan por él, porque su relación peso propio / carga de tráfico es mínima; es el polo opuesto del puente de piedra.
Actualmente los puentes colgantes se utilizan casi exclusivamente para grandes luces; por ello, salvo raras excepciones, todos tienen tablero metálico.
El puente colgante es, igual que el arco, una estructura que resiste gracias a su forma; en este caso salva una determinada luz mediante un mecanismo resistente que funciona exclusivamente a tracción, evitando gracias a su flexibilidad, que aparezcan flexiones en él.

 Figura 2.9

El cable,  es un elemento flexible, lo que quiere decir que no tiene rigidez y por tanto no resiste flexiones. Si se le aplica un sistema de fuerzas, tomará la forma necesaria para que en él sólo se produzcan esfuerzos axiales de tracción; si esto dejara de ser posible no resistiría. Por tanto, la forma del cable coincidirá forzosamente con la línea generada por la trayectoria de una de las posibles composiciones del sistema de fuerzas que actúan sobre él. Esta línea es el funicular del sistema de cargas, que se define precisamente como la forma que toma un hilo flexible cuando se aplica sobre él un sistema de fuerzas. La curva del cable de un puente colgante es una combinación de la catenaria, porque el cable principal pesa, y de la parábola, porque también pesa el tablero; sin embargo la diferencia entre ambas curvas es mínima, y por ello en los cálculos generalmente se ha utilizado la parábola de segundo grado.
El cable principal es el elemento básico de la estructura resistente del puente colgante. Su montaje debe salvar el vano entre las dos torres y para ello hay que tenderlo en el vacío. Esta fase es la más complicada de la construcción de los puentes colgantes.
Inicialmente se montan unos cables auxiliares, que son los primeros que deben salvar la luz del puente y llegar de contrapeso a contrapeso. La mayoría de los grandes puentes colgantes están situados sobre zonas navegables, y por ello permite pasar los cables iniciales con un remolcador; pero esto no es siempre posible. Como el sistema de cargas de los puentes es variable porque lo son las cargas de tráfico, los puentes colgantes en su esquema elemental son muy deformables. Este esquema elemental consiste en el cable principal, las péndolas, y un tablero sin rigidez, o lo que es lo mismo, con articulaciones en los puntos de unión con las péndolas. En la mayoría de los puentes colgantes, las péndolas que soportan el tablero son verticales.
El esquema clásico de los puentes colgantes admite pocas variaciones; los grandes se han hecho siempre con un cable principal en cada borde del tablero.


Las torres, han sido siempre los elementos más difíciles de proyectar de los puentes colgantes, porque son los que permiten mayor libertad. Por eso en ellas se han dado toda clase de variantes. En los años 20 fueron adquiriendo ya una forma propia, no heredada, adecuada a su función y a su material; la mayoría tienen dos pilares con sección cajón de alma llena, unidos por riostras horizontales, o cruces de San Andrés. En los últimos puentes colgantes europeos construidos con torres metálicas, se ha utilizado un nuevo sistema de empalme de las chapas que forman los pilares verticales. En vez de utilizar uniones roblonadas o atornilladas mediante solape de chapas, como se hizo en los puentes americanos, las uniones se hacen a tope, rectificando mediante fresado el contacto de los distintos módulos que se van superponiendo, de forma que las compresiones se transmiten directamente de chapa a chapa; la unión entre ellas se hace mediante soldadura parcial de la junta. Así se han hecho las torres del puente Severn en Inglaterra y de los puentes del Bósforo en Estambul.
Las torres no plantean problemas especiales de construcción, salvo la dificultad que supone elevar piezas o materiales a grandes alturas; las metálicas del puente Verrazano Narrows tienen una altura desde el nivel del mar de 210 m, y las de hormigón del puente Humber de 155 m.
Las torres de los puentes metálicos se montan generalmente mediante grúas trepadoras ancladas a ellas, que se van elevando a la vez que van subiendo las torres. Las de los puentes de hormigón se construyen mediante encofrados trepadores, como en el puente de Tancarville, o mediante encofrados deslizantes, como en el puente Humber

 
El montaje del tablero, se ha hecho en muchos de los grandes puentes colgantes por voladizos sucesivos, avanzando la ménsula desde una péndola a la siguiente, de la que se cuelga; el avance se hace simétricamente desde la torre hacia el centro del vano principal y hacia los extremos. Desde el propio tablero ya construido se van montando piezas más o menos grandes, elevándolas mediante grúas situados sobre él, hasta cerrar el tablero en el centro del vano. Así se construyó el puente George Washington, el Golden Gate y muchos de los puentes modernos japoneses.
Otro sistema de montaje, que se ha utilizado en la mayoría de los últimos grandes puentes, y en todos los de sección en cajón, consiste en dividir el tablero en dovelas de sección completa que se llevan por flotación bajo su posición definitiva, y se elevan a ella desde los cables principales mediante cabrestantes; una vez situadas en su posición definitiva se cuelgan de las péndolas. La secuencia de montaje en este caso es generalmente el inverso del anterior; se empiezan a colgar las dovelas centrales, y se avanza simétricamente hasta llegar a las torres. Así se construyó el puente doble de la Bahía de San Francisco, el Bay Bridge, terminado en 1936; el puente Verrazano Narrows en Nueva York; y los modernos: puente sobre el río Severn en Inglaterra, los puentes sobre el Bosforo en Estambul, y el puente sobre el estuario del Humber en Inglaterra. 

b. Atirantados.

Armaduras de refuerzo y cables arriostrados (atirantados) o reforzados ayudan a soportar la flexión local creada por las grandes cargas que atraviesan el puente. Las torres se construyen de secciones metálicas formadas a veces por gruesas planchas que les confieren apariencia de gran solidez. Las más antiguas, como las del puente de Brooklyn, son de sillería.
Para distinguir los dos tipos de puentes colgantes que podemos ver, llamaremos suspendido a aquel cuyos cables, normalmente dos, van de extremo a extremo del puente (ej. el Golden Gate) y atirantados (arriostrados) aquellos en los cuáles los cables, partiendo de las torres, sujetan el tablero formando triángulos (isósceles) con el tablero. La altura de dicho triángulo sería parte de la torre. Hay casos en que la torre tiene una posición inclinada como el puente del Alamillo de Sevilla y los cables forman triángulos escalenos con el tablero y parte de la torre.
Los elementos fundamentales de la estructura resistente del puente atirantado son los tirantes, que son cables rectos que atirantan el tablero, proporcionándoles una serie de apoyos intermedios más o menos rígidos.
Pero no sólo ellos forman la estructura resistente básica del puente atirantado; son necesarias las torres para elevar el anclaje fijo de los tirantes, de forma que introduzcan fuerzas verticales en el tablero para crear los seudo-apoyos; también el tablero interviene en el esquema resistente, porque los tirantes, al ser inclinados, introducen fuerzas horizontales que se deben equilibrar a través de él. Por todo ello, los tres elementos, tirantes, tablero y torres, constituyen la estructura resistente básica del puente atirantado.
La historia de los puentes atirantados es muy singular y diferente de la de los demás tipos; todos ellos se iniciaron como puentes modernos en el s. XIX, pero en cambio los atirantados se iniciaron en la segunda mitad del s. XX, concretamente en los años 50 de este siglo. Este retraso en su origen se está recuperando a pasos agigantados, porque su evolución ha sido extraordinariamente rápida; el primer puente atirantado moderno es el de Strömsund en Suecia, construido en 1955, con un vano principal de 183 m de luz, el de Normandía en Francia de 856 m, ya terminado, y el de Tatara en Japón de 890 m, actualmente en construcción; en menos de 40 años su luz máxima se va a multiplicar casi por cinco. Este carácter singular de los puentes atirantados les confiere un valor de novedad que los han convertido en el puente privilegiado del momento actual.
El puente atirantado admite variaciones significativas, tanto en su estructura como en su forma; no hay más que pasar revista a una serie de puentes atirantados para ver las diferencias que hay entre ellos:
a)  Longitudinalmente pueden tener dos torres y ser simétricos, o una sola torre desde donde se atiranta todo el vano principal.
b)  Pueden tener dos planos de atirantamiento situados en los bordes del tablero, o un solo plano situado en su eje
c)   Pueden tener muchos tirantes muy próximos, o pocos tirantes muy separados
d)   Pueden tener tirantes paralelos, radiales, o divergentes
e)  Las torres se pueden iniciar en los cimientos, o se pueden iniciar a partir del tablero, de forma que el conjunto tablero-torres-tirantes se apoya sobre pilas convencionales
f)   Las torres pueden tener diversas formas; pueden estar formadas por dos pilas, por una sola, pueden tener forma de A, forma de A prolongada verticalmente, etc

Los tirantes, se pueden organizar de diversas formas dentro de cada uno de los haces, porque caben diferentes posibilidades:
En primer lugar, es necesario definir el número de tirantes de cada haz, o lo que es lo mismo, la distancia entre los puntos de anclaje de los tirantes en el tablero. El número de tirantes es una de las cuestiones que más ha evolucionado en los puentes atirantados. Los primeros tenían pocos tirantes, con separación entre anclajes que llegó a pasar de los 50 m; se trataba de crear una serie de apoyos intermedios para convertir un puente de luces grandes en uno de luces medias.

En los puentes atirantados actuales el número de tirantes es mucho mayor que en los iniciales; se utilizan distancias entre anclajes que varían entre cinco y veinte metros, de forma que la flexión que podemos llamar local, la debida a la distancia entre los apoyos generados por los tirantes, es insignificante respecto a la flexión que se produce por la deformación general de la estructura. Si en un principio la finalidad de los tirantes era crear una serie de apoyos adicionales al tablero, para transformar un puente de luces grandes en uno de luces medias, este planteamiento ha evolucionado hasta considerar a los tirantes como un medio de apoyo casi continuo y elástico del tablero.
La distancia entre anclajes es lógicamente menor en los puentes de tablero de hormigón que en los de tablero metálico, y ello se debe en gran medida a este problema del proceso de construcción por voladizos sucesivos.
Definido el número de tirantes, es necesario definir la geometría de cada uno de los haces, es decir, del conjunto que desde una torre atiranta un semivano, un vano principal, o un vano de compensación.
A los tirantes paralelos se les ha llamado disposición en arpa y a los tirantes radiales, en abanico.
Los tirantes radiales o divergentes funcionan mejor que los paralelos, porque el atirantamiento es más eficaz y las flexiones en la torre menores. Los paralelos se han utilizado con frecuencia cuando la compensación del tablero se divide en vanos pequeños, de forma que los tirantes del haz de compensación se anclan directamente sobre pilas o muy cerca de ellas. De esta forma el atirantamiento es más rígido y las flexiones en la torre y en el vano principal disminuyen

Las torres, en los grandes puentes atirantados con planos de atirantamiento en ambos bordes del tablero, pueden ser análogas a las de los puentes colgantes: dos pilares verticales o ligeramente inclinados, unidos entre sí por vigas horizontales o cruces de San Andrés; se han construido muchos puentes atirantados con torres de este tipo. Con una riostra en cabeza son las del puente de Rande sobre la ría de Vigo de 401 m de luz o las del puente Luling sobre el río Mississippi de 372 m de luz; en el primero las torres son de hormigón y en el segundo metálicas. Las torres de los puentes de Zárate-Brazo Largo sobre los dos ramales del río Paraná, de 330 m de luz, son de hormigón con un arriostramiento metálico en cabeza en cruz de San Andrés aplastada.

Si los tirantes están contenidos en planos inclinados, la solución clásica es la torre en forma de A, que se ha utilizado con frecuencia, desde los primeros puentes atirantados hasta los actuales.
A partir de la torre en A caben muchas variantes, que se han utilizado en distintos puentes:

a) La A prolongada superiormente con un pilar vertical, que es la torre en Y invertida; esta solución se ha utilizado en varios grandes puentes, entre ellos en el de Normandía, de 856 m de luz
b)   La A cerrada bajo el tablero para reducir el ancho total de la base, forma que se ha llamado en diamante y que se puede combinar con la anterior, es decir, un diamante prolongado por un pilar vertical; esta combinación se ha utilizado en el puente de Yangpu, Cina, de 602 m de luz
           c)   La A sin cerrar en la parte superior, rematada con una o varias riostras
horizontales que unen los pilares inclinados que forman la A

En los puentes de luces no muy grandes se han utilizado con frecuencia, sobre todo en algunos de los primeros alemanes, la mínima expresión de las torres que es la formada por uno o dos pilares independientes sin ningún arriostramiento entre ellos. Si el puente tiene un solo plano de atirantamiento, la torre tendrá un solo pilar en el eje de la calzada, y si tiene doble plano tendrá dos pilares en los bordes.
La inmensa mayoría de las torres de los puentes atirantados son verticales en el plano del alzado del puente, pero algunas veces se han inclinado dentro de ese plano por distintas razones.
El puente del Alamillo en Sevilla, de Santiago Calatrava, tiene torre única y un vano único de 200 m de luz. En él la torre se ha inclinado hacia tierra y se han suprimido los tirantes de compensación; este sistema obliga a compensar las fuerzas en los tirantes con la excentricidad del peso propio de la torre respecto a su base, debida a su inclinación. Su peculiar estructura obligó a construir primero el tablero sobre cimbra, y después a hacer la torre, que se atirantaba a medida que iba subiendo. Se puede decir que el tablero atirantaba a la torre, y no a la inversa. El costo a sido desmesurado.

El  tablero, interviene en el esquema resistente básico de la estructura del puente atirantado porque debe resistir las componentes horizontales que le transmiten los tirantes. Estas componentes generalmente se equilibran en el propio tablero porque su resultante, igual que en la torre, debe ser nula.


Figura 2.11

La sección transversal del tablero depende en gran medida de la disposición de los tirantes. En los puentes atirantados en el eje, generalmente es un cajón cerrado con voladizos laterales, y en los puentes atirantados en los bordes, generalmente está formada por dos vigas longitudinales situadas en los bordes del tablero, enlazadas entre sí por vigas transversales; no obstante, tanto en uno como en otro sistema de atirantamiento caben diferentes variantes de la sección transversal; se puede llegar incluso a invertir las secciones, es decir, utilizar el cajón único cerrado en un puente con doble plano de atirantamiento, y por el contrario, el doble cajón, unido por vigas transversales con plano único de tirantes.

3 comentarios:

  1. ¿De que material están hechos los tirantes? Gracias.

    ResponderEliminar
  2. Los tirantes son los cables formados por los torones de alambres, es decir, de acero

    ResponderEliminar